Аннотация:
The present paper is devoted to a study of orientation-preserving homeomorphisms
on three-dimensional manifolds with a non-wandering set consisting of a finite number of surface
attractors and repellers. The main results of the paper relate to a class of homeomorphisms
for which the restriction of the map to a connected component of the non-wandering set
is topologically conjugate to an orientation-preserving pseudo-Anosov homeomorphism. The
ambient $\Omega$-conjugacy of a homeomorphism from the class with a locally direct product of a
pseudo-Anosov homeomorphism and a rough transformation of the circle is proved. In addition,
we prove that the centralizer of a pseudo-Anosov homeomorphisms consists of only pseudo-
Anosov and periodic maps.