RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 2, страницы 369–375 (Mi rcd1259)

Hyperbolic Attractors Which are Anosov Tori

Marina K. Barinova, Vyacheslav Z. Grines, Olga V. Pochinka, Evgeny V. Zhuzhoma

HSE University, ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: We consider a topologically mixing hyperbolic attractor $\Lambda\subset M^n$ for a diffeomorphism $f:M^n\to M^n$ of a compact orientable $n$-manifold $M^n$, $n>3$. Such an attractor $\Lambda$ is called an Anosov torus provided the restriction $f|_{\Lambda}$ is conjugate to Anosov algebraic automorphism of $k$-dimensional torus $\mathbb T^k$. We prove that $\Lambda$ is an Anosov torus for two cases: 1) $\dim{\Lambda}=n-1$, $\dim{W^u_x}=1$, $x\in\Lambda$; 2) $\dim\,\Lambda=k,\,\dim\, W^u_x=k-1,\,x\in\Lambda$, and $\Lambda$ belongs to an $f$-invariant closed $k$-manifold, $2\leqslant k\leqslant n$, topologically embedded in $M^n$.

Ключевые слова: hyperbolic attractor, Anosov diffeomorphism, $\Omega$-stable diffeomorphism, chaotic attractor

MSC: 37D05

Поступила в редакцию: 18.05.2023
Принята в печать: 25.10.2023

Язык публикации: английский

DOI: 10.1134/S1560354723540018



© МИАН, 2024