RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 2, страницы 376–403 (Mi rcd1260)

Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold

Natalia G. Gelfreikh, Alexey V. Ivanov

Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint-Petersburg, Russia

Аннотация: We study a slow-fast system with two slow and one fast variables. We assume that the slow manifold of the system possesses a fold and there is an equilibrium of the system in a small neighborhood of the fold. We derive a normal form for the system in a neighborhood of the pair “equilibrium-fold” and study the dynamics of the normal form. In particular, as the ratio of two time scales tends to zero we obtain an asymptotic formula for the Poincaré map and calculate the parameter values for the first period-doubling bifurcation. The theory is applied to a generalization of the FitzHugh – Nagumo system.

Ключевые слова: slow-fast systems, period-doubling bifurcation

MSC: 37C55, 37D25, 37B55, 37C60

Поступила в редакцию: 03.07.2023
Принята в печать: 30.11.2023

Язык публикации: английский

DOI: 10.1134/S156035472354002X



© МИАН, 2024