RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2025, том 30, выпуск 2, страницы 306–324 (Mi rcd1309)

Scenarios for the Creation of Hyperchaotic Attractors with Three Positive Lyapunov Exponents

Efrosiniia Karatetskaia, Aikan Shykhmamedov, Konstantin Soldatkin, Alexey Kazakov

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers $(-1, e^{i \phi}, e^{-i \phi})$. The proposed scenarios are illustrated by examples of the threedimensional Kaneko endomorphism and a four-dimensional Hénon map.

Ключевые слова: hyperchaos, Hénon-like map, Lyapunov exponents

MSC: 37C29, 37G35, 37N25

Поступила в редакцию: 01.03.2025
Принята в печать: 17.03.2025

Язык публикации: английский

DOI: 10.1134/S156035472502008X



© МИАН, 2025