RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2025, том 30, выпуск 3, страницы 354–381 (Mi rcd1311)

Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane

Mariana Costa-Villegas, Luis C. García-Naranjo

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Аннотация: We introduce a class of examples which provide an affine generalization of the nonholonomic problem of a convex body that rolls without slipping on the plane. These examples are constructed by taking as given two vector fields, one on the surface of the body and another on the plane, which specify the velocity of the contact point. We investigate dynamical aspects of the system such as existence of first integrals, smooth invariant measure, integrability and chaotic behavior, giving special attention to special shapes of the convex body and specific choices of the vector fields for which the affine nonholonomic constraints may be physically realized.

Ключевые слова: nonholonomic systems, rigid body dynamics, first integrals, invariant measure, integrability, chaotic behavior

MSC: 37J60, 70E18, 70E40, 70F25

Поступила в редакцию: 13.09.2024
Принята в печать: 30.01.2025

Язык публикации: английский

DOI: 10.1134/S1560354725510021



© МИАН, 2025