Аннотация:
We study a class of integrable inhomogeneous Lotka – Volterra systems whose
quadratic terms are defined by an antisymmetric matrix and whose linear terms consist
of three blocks. We provide the Poisson algebra of their Darboux polynomials and prove
a contraction theorem. We then use these results to classify the systems according to the
number of functionally independent (and, for some, commuting) integrals. We also establish
separability/solvability by quadratures, given the solutions to the $2$- and $3$-dimensional systems,
which we provide in terms of the Lambert $W$ function.