RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2025, том 30, выпуск 3, страницы 382–407 (Mi rcd1312)

On a Quadratic Poisson Algebra and Integrable Lotka – Volterra Systems with Solutions in Terms of Lambert’s $W$ Function

Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel

Department of Mathematical and Physical Sciences, La Trobe University, 3086 Victoria, Australia

Аннотация: We study a class of integrable inhomogeneous Lotka – Volterra systems whose quadratic terms are defined by an antisymmetric matrix and whose linear terms consist of three blocks. We provide the Poisson algebra of their Darboux polynomials and prove a contraction theorem. We then use these results to classify the systems according to the number of functionally independent (and, for some, commuting) integrals. We also establish separability/solvability by quadratures, given the solutions to the $2$- and $3$-dimensional systems, which we provide in terms of the Lambert $W$ function.

Ключевые слова: Poisson algebra, integrability, Lotka – Volterra system, Lambert $W$ function, Darboux polynomial

MSC: 37J35

Поступила в редакцию: 27.08.2024
Принята в печать: 06.11.2024

Язык публикации: английский

DOI: 10.1134/S1560354724580032



© МИАН, 2025