RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 1, страницы 37–47 (Mi rcd139)

Эта публикация цитируется в 2 статьях

Second-degree Painlevé Equations and Their Contiguity Relations

Basil Grammaticosa, Alfred Ramanib, Partha Guhacd

a IMNC, Université Paris VII & XI, CNRS,UMR 8165, Bât. 440, 91406 Orsay, France
b Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
c Satyendranath Nath Bose National Centre for Basic Sciences, JD Block, Sector III, Kolkata — 700098, India
d Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures sur Yvette, France

Аннотация: We study second-order, second-degree systems related to the Painlevé equations which possess one and two parameters. In every case we show that by introducing a quantity related to the canonical Hamiltonian variables it is possible to derive such a second-degree equation. We investigate also the contiguity relations of the solutions of these higher-degree equations. In most cases these relations have the form of correspondences, which would make them non-integrable in general. However, as we show, in our case these contiguity relations are indeed integrable mappings, with a single ambiguity in their evolution (due to the sign of a square root).

Ключевые слова: Painlevé equations, contiguity relations, second-degree differential equations, Hamiltonian formalism.

MSC: 34M55, 37J35

Поступила в редакцию: 03.10.2013
Принята в печать: 04.12.2013

Язык публикации: английский

DOI: 10.1134/S1560354714010031



Реферативные базы данных:


© МИАН, 2024