RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 6, страницы 553–584 (Mi rcd149)

Эта публикация цитируется в 16 статьях

A New Class of Problems in the Calculus of Variations

Ivar Ekelanda, Yiming Longb, Qinglong Zhoub

a CEREMADE and Institut de Finance, Université de Paris-IX, Dauphine, Paris, France
b Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

Аннотация: This paper investigates an infinite-horizon problem in the one-dimensional calculus of variations, arising from the Ramsey model of endogeneous economic growth. Following Chichilnisky, we introduce an additional term, which models concern for the well-being of future generations. We show that there are no optimal solutions, but that there are equilibrium strateges, i.e. Nash equilibria of the leader-follower game between successive generations. To solve the problem, we approximate the Chichilnisky criterion by a biexponential criterion, we characterize its equilibria by a pair of coupled differential equations of HJB type, and we go to the limit. We find all the equilibrium strategies for the Chichilnisky criterion. The mathematical analysis is difficult because one has to solve an implicit differential equation in the sense of Thom. Our analysis extends earlier work by Ekeland and Lazrak.

Ключевые слова: minimization problem, sustainable economy, time-inconsistency, existence.

MSC: 49J40, 91B02, 49L99

Поступила в редакцию: 19.06.2013
Принята в печать: 11.10.2013

Язык публикации: английский

DOI: 10.1134/S1560354713060014



Реферативные базы данных:


© МИАН, 2024