RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 6, страницы 732–741 (Mi rcd167)

Эта публикация цитируется в 9 статьях

An Estimation for the Hyperbolic Region of Elliptic Lagrangian Solutions in the Planar Three-body Problem

Xijun Hu, Yuwei Ou

Department of Mathematics, Shandong University, Jinan, Shandong 250100, The People’s Republic of China

Аннотация: It is well known that the linear stability of elliptic Lagrangian solutions depends on the mass parameter $\beta=27(m_1m_2+m_2m_3+m_3m_1)/(m_1+m_2+m_3)^2 \in [0,9]$ and the eccentricity $e \in [0,1)$. Based on new techniques for evaluating the hyperbolicity and the recently developed trace formula for Hamiltonian systems [9], we identify regions for $(\beta,e)$ such that elliptic Lagrangian solutions are hyperbolic. Consequently, we have proven that the elliptic relative equilibrium of square central configurations is hyperbolic with any eccentricity.

Ключевые слова: central configurations, elliptic relative equilibrium, linear stability, hyperbolicity, $n$-body problem.

MSC: 70F10, 37J25, 37J45

Поступила в редакцию: 12.09.2013
Принята в печать: 16.11.2013

Язык публикации: английский

DOI: 10.1134/S1560354713060129



Реферативные базы данных:


© МИАН, 2024