RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 6, страницы 774–800 (Mi rcd169)

Эта публикация цитируется в 7 статьях

Shilnikov Lemma for a Nondegenerate Critical Manifold of a Hamiltonian System

Sergey Bolotinab, Piero Negrinic

a V. A. Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706-1325, USA
c Dipartimento di Matematica, Sapienza, Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy

Аннотация: Let $M$ be a normally hyperbolic symplectic critical manifold of a Hamiltonian system. Suppose $M$ consists of equilibria with real eigenvalues. We prove an analog of the Shilnikov lemma (strong version of the $\lambda$-lemma) describing the behavior of trajectories near $M$. Using this result, trajectories shadowing chains of homoclinic orbits to $M$ are represented as extremals of a discrete variational problem. Then the existence of shadowing periodic orbits is proved. This paper is motivated by applications to the Poincaré’s second species solutions of the $3$ body problem with $2$ masses small of order $\mu$. As $\mu \to 0$, double collisions of small bodies correspond to a symplectic critical manifold $M$ of the regularized Hamiltonian system. Thus our results imply the existence of Poincaré’s second species (nearly collision) periodic solutions for the unrestricted $3$ body problem.

Ключевые слова: Hamiltonian system, symplectic map, generating function, heteroclinic orbit.

MSC: 37J, 37D, 70F

Поступила в редакцию: 31.07.2013
Принята в печать: 01.12.2013

Язык публикации: английский

DOI: 10.1134/S1560354713060142



Реферативные базы данных:


© МИАН, 2024