RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 4, страницы 513–522 (Mi rcd178)

Energy Growth for a Nonlinear Oscillator Coupled to a Monochromatic Wave

Dmitry V. Turaevab, Christopher Warnerba, Sergey Zelikab

a University of Surrey, Guildford, Surrey GU2 7XH, UK
b Imperial College, SW7 2 AZ London, UK

Аннотация: A system consisting of a chaotic (billiard-like) oscillator coupled to a linear wave equation in the three-dimensional space is considered. It is shown that the chaotic behavior of the oscillator can cause the transfer of energy from a monochromatic wave to the oscillator, whose energy can grow without bound.

Ключевые слова: delayed equation, invariant manifold, normal hyperbolicity, billiard.

MSC: 35B05, 35B42, 37K49

Поступила в редакцию: 04.04.2014
Принята в печать: 17.05.2014

Язык публикации: английский

DOI: 10.1134/S1560354714040078



Реферативные базы данных:


© МИАН, 2024