RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 5, страницы 523–532 (Mi rcd198)

Эта публикация цитируется в 10 статьях

Generalized Adler–Moser and Loutsenko Polynomials for Point Vortex Equilibria

Kevin A. O'Neil, Nicholas Cox-Steib

Department of Mathematics, The University of Tulsa, 800 Tucker Dr., Tulsa OK 74104 USA

Аннотация: Equilibrium configurations of point vortices with circulations of two discrete values are associated with the zeros of a sequence of polynomials having many continuous parameters: the Adler–Moser polynomials in the case of circulation ratio –1, and the Loutsenko polynomials in the case of ratio –2. In this paper a new set of polynomial sequences generalizing the vortex system to three values of circulations is constructed. These polynomials are extensions of the previously known polynomials in the sense that they are special cases of the latter when the third circulation is zero. The polynomials are naturally connected with rational functions that satisfy a second-order differential equation.

Ключевые слова: point vortex, equilibrium, polynomial method.

MSC: 76B47, 37F10, 34M15

Поступила в редакцию: 31.05.2014
Принята в печать: 14.07.2014

Язык публикации: английский

DOI: 10.1134/S1560354714050013



Реферативные базы данных:


© МИАН, 2024