RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 5, страницы 477–509 (Mi rcd199)

Эта публикация цитируется в 6 статьях

Global Structure and Geodesics for Koenigs Superintegrable Systems

Galliano Valent

Laboratoire de Physique Mathématique de Provence, 19 bis Boulevard Emile Zola, F-13100 Aix-en-Provence, France

Аннотация: We present a new derivation of the local structure of Koenigs metrics using a framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a potential preserving their superintegrability (SI) and most of them are shown to be globally defined on either $\mathbb{R}^2$ or $\mathbb{H}^2$. Their geodesic flows are easily determined thanks to their quadratic integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the quantum level and for two metrics, for which all of the geodesics are closed, it is even possible to compute the classical action variables and the point spectrum of the quantum Hamiltonian.

Ключевые слова: superintegrable two-dimensional systems, analysis on manifolds, quantization.

MSC: 32C05, 81V99, 37E99, 37K25

Поступила в редакцию: 06.08.2016
Принята в печать: 18.08.2016

Язык публикации: английский

DOI: 10.1134/S1560354716050014



Реферативные базы данных:


© МИАН, 2024