RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 6, страницы 643–659 (Mi rcd215)

Эта публикация цитируется в 6 статьях

Noncommutative Integrable Systems on $b$-symplectic Manifolds

Anna Kiesenhofera, Eva Mirandaab

a Department of Mathematics, Universitat Politècnica de Catalunya, EPSEB, Avinguda del Doctor Marañón 44–50, Barcelona, Spain
b Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain

Аннотация: In this paper we study noncommutative integrable systems on $b$-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering noncommutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and prove an action-angle theorem for noncommutative integrable systems on a $b$-symplectic manifold in a neighborhood of a Liouville torus inside the critical set of the Poisson structure associated to the $b$-symplectic structure.

Ключевые слова: Poisson manifolds, $b$-symplectic manifolds, noncommutative integrable systems, action-angle coordinates.

Поступила в редакцию: 08.06.2016
Принята в печать: 05.10.2016

Язык публикации: английский

DOI: 10.1134/S1560354716060058



Реферативные базы данных:


© МИАН, 2024