RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 1, страницы 18–26 (Mi rcd241)

Эта публикация цитируется в 4 статьях

Nekhoroshev Theorem for Perturbations of the Central Motion

Dario Bambusi, Alessandra Fusè

Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, I-20133 Milano

Аннотация: In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.

Ключевые слова: Nekhoroshev theorem, central motion, Hamiltonian dynamics.

MSC: 37J40, 70H09

Поступила в редакцию: 30.09.2016
Принята в печать: 16.12.2016

Язык публикации: английский

DOI: 10.1134/S1560354717010026



Реферативные базы данных:


© МИАН, 2024