RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 2, страницы 109–121 (Mi rcd245)

Эта публикация цитируется в 4 статьях

Stability and Integrability Aspects for the Maxwell–Bloch Equations with the Rotating Wave Approximation

Ioan Caşuab, Cristian Lăzureanuab

a Department of Mathematics, West University of Timişoara, Bd. V. Pârvan, Nr. 4, 300223 Timişoara, România
b Department of Mathematics, Politehnica University of Timişoara, Piaţa Victoriei, Nr. 2, 300006 Timişoara, România

Аннотация: Infinitely many Hamilton–Poisson realizations of the five-dimensional real valued Maxwell–Bloch equations with the rotating wave approximation are constructed and the energy-Casimir mapping is considered. Also, the image of this mapping is presented and connections with the equilibrium states of the considered system are studied. Using some fibers of the image of the energy-Casimir mapping, some special orbits are obtained. Finally, a Lax formulation of the system is given.

Ключевые слова: Maxwell–Bloch equations, Hamiltonian dynamics, energy-Casimir mapping, homoclinic orbits, periodic orbits, elliptic functions.

MSC: 37J25, 37J45, 33E05

Поступила в редакцию: 31.10.2016
Принята в печать: 12.12.2016

Язык публикации: английский

DOI: 10.1134/S1560354717020010



Реферативные базы данных:


© МИАН, 2024