RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 3, страницы 266–271 (Mi rcd256)

Эта публикация цитируется в 2 статьях

Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation

Ilia Yu. Gaiur, Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia

Аннотация: The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the $P_2^2$ equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays $\phi = \frac{2}{5}\pi(2n+1)$ on the complex plane have been found by the isomonodromy deformations technique.

Ключевые слова: $P_2^2$ equation, isomonodromy deformations technique, special functions, Painlevé transcendents.

MSC: 34E10

Поступила в редакцию: 14.04.2017
Принята в печать: 11.05.2017

Язык публикации: английский

DOI: 10.1134/S1560354717030066



Реферативные базы данных:


© МИАН, 2024