RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2017, том 22, выпуск 6, страницы 721–739 (Mi rcd285)

Эта публикация цитируется в 11 статьях

Integrable Deformations of the Bogoyavlenskij–Itoh Lotka–Volterra Systems

C.A. Evripidoua, P. Kassotakisb, P. Vanhaeckec

a Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia
b Department of Mathematics and Statistics, University of Cyprus, Nicosia 1678, Cyprus
c Laboratoire de Mathématiques et Applications, UMR 7348 du CNRS, Université de Poitiers, 86962 Futuroscope Chasseneuil Cedex, France

Аннотация: We construct a family of integrable deformations of the Bogoyavlenskij–Itoh systems and construct a Lax operator with spectral parameter for it. Our approach is based on the construction of a family of compatible Poisson structures for the undeformed systems, whose Casimirs are shown to yield a generating function for the integrals in involution of the deformed systems.We show how these deformations are related to the Veselov–Shabat systems.

Ключевые слова: Integrable systems, deformations.

MSC: 37J35, 39A22

Поступила в редакцию: 19.09.2017
Принята в печать: 01.11.2017

Язык публикации: английский

DOI: 10.1134/S1560354717060090



Реферативные базы данных:


© МИАН, 2024