RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 1, страницы 80–101 (Mi rcd310)

Эта публикация цитируется в 1 статье

Stability of the Polar Equilibria in a Restricted Three-body Problem on the Sphere

Jaime Andrade, Claudio Vidal

Universidad de Bío-Bío, Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Casilla 5–C, Concepción, VIII–región, Chile

Аннотация: In this paper we consider a symmetric restricted circular three-body problem on the surface $\mathbb{S}^2$ of constant Gaussian curvature $\kappa=1$. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius $a\in (0,1)$. It is verified that both poles of $\mathbb{S}^2$ are equilibrium points for any value of the parameter $a$. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter $a$. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) $a=\dfrac{\sqrt{4-\sqrt{2}}}{2}$ and $a=\sqrt{\dfrac{2}{3}}$, while the south pole has one value of bifurcation $a=\dfrac{\sqrt{3}}{2}$.

Ключевые слова: circular restricted three-body problem on surfaces of constant curvature, Hamiltonian formulation, normal form, resonance, nonlinear stability.

MSC: 70F07, 70G60, 37D40

Поступила в редакцию: 01.10.2017
Принята в печать: 05.12.2017

Язык публикации: английский

DOI: 10.1134/S1560354718010070



Реферативные базы данных:


© МИАН, 2024