RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 3, страницы 304–324 (Mi rcd325)

Эта публикация цитируется в 2 статьях

On a Convex Embedding of the Euler Problem of Two Fixed Centers

Seongchan Kim

Mathematisches Institut, Universität Augsburg, Universitätsstrasse 14, Augsburg, 86159 Germany

Аннотация: In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.

Ключевые слова: convex embedding, global surface of section, Euler problem of two fixed centers.

MSC: 70F05, 35J35, 37J05

Поступила в редакцию: 16.10.2017
Принята в печать: 31.01.2018

Язык публикации: английский

DOI: 10.1134/S1560354718030061



Реферативные базы данных:


© МИАН, 2024