RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 4, страницы 458–470 (Mi rcd333)

Эта публикация цитируется в 6 статьях

Hyperbolic Chaos in Systems Based on FitzHugh–Nagumo Model Neurons

Sergey P. Kuznetsovab, Yuliya V. Sedovab

a Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
b Udmurt State University, ul. Universitetskay 1, Izhevsk, 426034 Russia

Аннотация: In the present paper we consider and study numerically two systems based on model FitzHugh–Nagumo neurons, where in the presence of periodic modulation of parameters it is possible to implement chaotic dynamics on the attractor in the form of a Smale–Williams solenoid in the stroboscopic Poincaré map. In particular, hyperbolic chaos characterized by structural stability occurs in a single neuron supplemented by a time-delay feedback loop with a quadratic nonlinear element.

Ключевые слова: hyperbolic chaos, Smale–Williams solenoid, FitzHugh–Nagumo neuron, time-delay system.

MSC: 37D05, 37D20, 37D45, 37M25, 82C32, 92B20

Поступила в редакцию: 06.05.2018
Принята в печать: 04.06.2018

Язык публикации: английский

DOI: 10.1134/S1560354718040068



Реферативные базы данных:


© МИАН, 2024