RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2018, том 23, выпуск 7-8, страницы 821–841 (Mi rcd369)

Эта публикация цитируется в 4 статьях

Exponential Stability in the Perturbed Central Force Problem

Dario Bambusi, Alessandra Fusè, Marco Sansottera

Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133 Milano

Аннотация: We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but for the Keplerian and the harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhoroshev’s theorem. We deduce stability of the actions over exponentially long times when the system is subject to an arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.

Ключевые слова: exponential stability, Nekhoroshev theory, perturbation theory, normal form theory, central force problem.

MSC: 70K45, 34C20, 37G05, 70F15

Поступила в редакцию: 30.01.2018
Принята в печать: 04.12.2018

Язык публикации: английский

DOI: 10.1134/S156035471807002X



Реферативные базы данных:


© МИАН, 2024