RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2012, том 17, выпуск 5, страницы 385–396 (Mi rcd410)

Эта публикация цитируется в 19 статьях

Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle

Leonid G. Kurakinab, Irina V. Ostrovskayaa

a Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences, ul. Mil’chakova 8a, Rostov-on-Don, 344090 Russia
b Southern Mathematical Institute of VSC RAS, ul. Markusa 22, Vladikavkaz, 362027 Russia

Аннотация: A nonlinear stability analysis of the stationary rotation of a system of five identical point vortices lying uniformly on a circle of radius $R_0$ outside a circular domain of radius $R$ is performed. The problem is reduced to the problem of stability of an equilibrium position of a Hamiltonian system with a cyclic variable. The stability of stationary motion is interpreted as Routh stability. Conditions for stability, formal stability and instability are obtained depending on the values of the parameter $q=R^2/R^2_0$.

Ключевые слова: point vortices, stationary motion, stability, resonance.

MSC: 76B47, 34D20, 70K30

Поступила в редакцию: 26.01.2012
Принята в печать: 24.03.2012

Язык публикации: английский

DOI: 10.1134/S1560354712050024



Реферативные базы данных:


© МИАН, 2024