RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 3, страницы 293–308 (Mi rcd44)

Note on Free Symmetric Rigid Body Motion

Vladimir Dragovićab, Borislav Gajića, Božidar Jovanovića

a Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
b Department of Mathematical Sciences, The University of Texas at Dallas, 800 West Campbell Road 75080 Richardson TX, USA

Аннотация: We consider the Euler equations of motion of a free symmetric rigid body around a fixed point, restricted to the invariant subspace given by the zero values of the corresponding linear Noether integrals. In the case of the $SO(n-2)$-symmetry, we show that almost all trajectories are periodic and that the motion can be expressed in terms of elliptic functions. In the case of the $SO(n-3)$-symmetry, we prove the solvability of the problem by using a recent Kozlov’s result on the Euler–Jacobi–Lie theorem.

Ключевые слова: Euler equations, Manakov integrals, spectral curve, reduced Poisson space.

MSC: 37J35, 70H06, 70E45

Поступила в редакцию: 30.04.2015

Язык публикации: английский

DOI: 10.1134/S156035471503006



Реферативные базы данных:


© МИАН, 2025