RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Regular and Chaotic Dynamics // Àðõèâ

Regul. Chaotic Dyn., 2011, òîì 16, âûïóñê 3-4, ñòðàíèöû 311–329 (Mi rcd440)

Ýòà ïóáëèêàöèÿ öèòèðóåòñÿ â 10 ñòàòüÿõ

Lotka–Volterra Equations in Three Dimensions Satisfying the Kowalevski–Painlevé Property

Kyriacos Constandinides, Pantelis A. Damianou

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Àííîòàöèÿ: We examine a class of Lotka–Volterra equations in three dimensions which satisfy the Kowalevski–Painlevé property. We restrict our attention to Lotka–Volterra systems defined by a skew symmetric matrix. We obtain a complete classification of such systems. The classification is obtained using Painlevé analysis and more specifically by the use of Kowalevski exponents. The imposition of certain integrality conditions on the Kowalevski exponents gives necessary conditions. We also show that the conditions are sufficient.

Êëþ÷åâûå ñëîâà: Lotka–Volterra equations, Kowalevski exponents, Painlevé analysis.

MSC: 34G20, 34M55, 37J35

Ïîñòóïèëà â ðåäàêöèþ: 02.10.2010
Ïðèíÿòà â ïå÷àòü: 22.11.2010

ßçûê ïóáëèêàöèè: àíãëèéñêèé

DOI: 10.1134/S1560354711030075



Ðåôåðàòèâíûå áàçû äàííûõ:


© ÌÈÀÍ, 2024