RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 3-4, страницы 330–355 (Mi rcd441)

Эта публикация цитируется в 2 статьях

Algebraic Integrability and Geometry of the $\mathfrak{d}_3^{(2)}$ Toda Lattice

Djagwa Dehainsalaab

a Laboratoire de Mathématiques et Applications, UMR CNRS 6086, France
b Université de Poitiers, Téléport 2, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

Аннотация: In this paper, we consider the Toda lattice associated to the twisted affine Lie algebra $\mathfrak{d}_3^{(2)}$. We show that the generic fiber of the momentum map of this system is an affine part of an Abelian surface and that the flows of integrable vector fields are linear on this surface, so that the system is algebraic completely integrable. We also give a detailed geometric description of these Abelian surfaces and of the divisor at infinity. As an application, we show that the lattice is related to the Mumford system and we construct an explicit morphism between these systems, leading to a new Poisson structure for the Mumford system. Finally, we give a new Lax equation with spectral parameter for this Toda lattice and we construct an explicit linearization of the system.

Ключевые слова: Toda lattice, integrable systems, algebraic integrability, Abelian surface.

MSC: 34G20, 34M55, 37J35

Поступила в редакцию: 15.12.2009
Принята в печать: 21.08.2010

Язык публикации: английский

DOI: 10.1134/S1560354711030087



Реферативные базы данных:


© МИАН, 2024