RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2011, том 16, выпуск 6, страницы 663–670 (Mi rcd462)

Эта публикация цитируется в 9 статьях

Routh Symmetry in the Chaplygin’s Rolling Ball

Byungsoo Kim

INRS-ETE, Quebec, G1K 9A9, Canada

Аннотация: The Routh integral in the symmetric Chaplygin’s rolling ball has been regarded as a mysterious conservation law due to its interesting form of $\sqrt{I_1I_3+m\langle I s, s \rangle}\Omega_3$. In this paper, a new form of the Routh integral is proposed as a Noether’s pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.

Ключевые слова: non-holonomic system, Noether symmetry, integrable system, Lagrange–D’Alembert equations.

MSC: 37J60, 37J35, 70F25

Поступила в редакцию: 21.06.2011
Принята в печать: 17.08.2011

Язык публикации: английский

DOI: 10.1134/S1560354711060074



Реферативные базы данных:


© МИАН, 2024