RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 210–221 (Mi rcd489)

Эта публикация цитируется в 2 статьях

On the 75th birthday of Professor L.P. Shilnikov

Approximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbations

Ming-Chia Lia, M. I. Malkinb

a Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
b Department of Mathematics and Mechanics, Nizhny Novgorod State University, Gagarin Pr. 23, Nizhny Novgorod, 603950 Russia

Аннотация: We consider piecewise monotone (not necessarily, strictly) piecewise $C^2$ maps on the interval with positive topological entropy. For such a map $f$ we prove that its topological entropy $h_{top}(f)$ can be approximated (with any required accuracy) by restriction on a compact strictly $f$-invariant hyperbolic set disjoint from some neighborhood of prescribed set consisting of periodic attractors, nonhyperbolic intervals and endpoints of monotonicity intervals. By using this result we are able to generalize main theorem from [1] on chaotic behavior of multidimensional perturbations of solutions for difference equations which depend on two variables at nonperturbed value of parameter.

Ключевые слова: chaotic dynamics, difference equations, one-dimensional maps, topological entropy, hyperbolic orbits.

MSC: 37D45

Поступила в редакцию: 16.02.2010
Принята в печать: 09.03.2010

Язык публикации: английский

DOI: 10.1134/S1560354710020097



Реферативные базы данных:


© МИАН, 2024