RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 2-3, страницы 382–389 (Mi rcd503)

Эта публикация цитируется в 7 статьях

On the 75th birthday of Professor L.P. Shilnikov

Asymptotic stability via the Krein–Rutman theorem for singularly perturbed parabolic periodic Dirichlet problems

N. N. Nefedova, L. Reckeb, K. R. Schneiderc

a Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia
b Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, D-10099 Berlin, Germany
c Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Аннотация: We consider singularly perturbed semilinear parabolic periodic problems and assume the existence of a family of solutions. We present an approach to establish the exponential asymptotic stability of these solutions by means of a special class of lower and upper solutions. The proof is based on a corollary of the Krein–Rutman theorem.

Ключевые слова: singularly perturbed parabolic Dirichlet problems, exponential asymptotic stability, Krein–Rutman theorem, lower and upper solutions.

MSC: 35B10, 35B25, 35B35, 35K58, 35K90

Поступила в редакцию: 05.11.2009
Принята в печать: 12.12.2009

Язык публикации: английский

DOI: 10.1134/S1560354710020231



Реферативные базы данных:


© МИАН, 2024