RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2010, том 15, выпуск 6, страницы 637–645 (Mi rcd522)

Эта публикация цитируется в 6 статьях

On the stability problem of stationary solutions for the Euler equation on a 2-dimensional torus

P. Buttà, P. Negrini

Dipartimento di Matematica, SAPIENZA Università di Roma, P. le Aldo Moro 2, 00185 Roma, Italy

Аннотация: We study the linear stability problem of the stationary solution $\psi^*=-\cos y$ for the Euler equation on a 2-dimensional flat torus of sides $2\pi L$ and $2\pi$. We show that $\psi^*$ is stable if $L\in (0, 1)$ and that exponentially unstable modes occur in a right neighborhood of $L=n$ for any integer $n$. As a corollary, we gain exponentially instability for any $L$ large enough and an unbounded growth of the number of unstable modes as $L$ diverges.

Ключевые слова: Euler equation, shear flows, linear stability.

MSC: 76E05, 35Q35, 34B08

Поступила в редакцию: 19.01.2010
Принята в печать: 03.03.2010

Язык публикации: английский

DOI: 10.1134/S1560354710510143



Реферативные базы данных:


© МИАН, 2024