RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 1, страницы 9–18 (Mi rcd555)

Dynamics of Coupled Non-Identical Systems with Period-Doubling Cascade

A. P. Kuznetsovab, I. R. Sataeva, Yu. V. Sedovaab

a Institute of Radio-Engineering and Electronics, RAS, ul. Zelenaya 38, Saratov, 410019 Russia
b Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia

Аннотация: We discuss the structure of bifurcation diagram in the plane of parameters controlling period-doublings for the system of coupled logistic maps. The analysis is carried out by computing the charts of dynamical regimes and charts of Lyapunov exponents giving showy and effective illustrations. The critical point of codimension two at the border of chaos is found. It is a terminal point for the Feigenbaum critical line. The bifurcation analysis in the vicinity of this point is presented.

Ключевые слова: criticality, universality, transition to chaos, coupled maps, bifurcation, terminal point.

MSC: 34C15, 37D45, 37E20

Поступила в редакцию: 14.09.2007
Принята в печать: 08.11.2007

Язык публикации: английский

DOI: 10.1134/S1560354708010024



Реферативные базы данных:


© МИАН, 2024