RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 1, страницы 37–48 (Mi rcd56)

Эта публикация цитируется в 14 статьях

Dynamics of the Finite-dimensional Kuramoto Model: Global and Cluster Synchronization

Vladimir N. Belykh, Valentin S. Petrov, Grigory V. Osipov

Department of Control Theory, Nizhny Novgorod University, ul. Gagarina 23, Nizhny Novgorod, 603950 Russia

Аннотация: Synchronization phenomena in networks of globally coupled non-identical oscillators have been one of the key problems in nonlinear dynamics over the years. The main model used within this framework is the Kuramoto model. This model shows three main types of behavior: global synchronization, cluster synchronization including chimera states and totally incoherent behavior. We present new sufficient conditions for phase synchronization and conditions for an asynchronous mode in the finite-size Kuramoto model. In order to find these conditions for constant and time varying frequency mismatch, we propose a simple method of comparison which allows one to obtain an explicit estimate of the phase synchronization range. Theoretical results are supported by numerical simulations.

Ключевые слова: phase oscillators, Kuramoto model, global synchronization, existence and stability conditions, asynchronous mode.

MSC: 34C25, 34C28, 34C46, 37C75

Поступила в редакцию: 11.11.2014

Язык публикации: английский

DOI: 10.1134/S1560354715010037



Реферативные базы данных:


© МИАН, 2025