RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 3, страницы 166–177 (Mi rcd568)

Эта публикация цитируется в 5 статьях

Stability of Equilibrium Solutions of Hamiltonian Systems Under the Presence of a Single Resonance in the Non-Diagonalizable Case

C. Vidala, F. Dos Santosb

a Departamento de Matemática, Facultad de Ciencias, Universidad del Bio Bio, Casilla 5-C, Concepción, VIII-Region, Chile
b Departamento de Matemática, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n Jardim Rosa Elze, São Cristóvão - SE, Brazil

Аннотация: The problem of knowing the stability of one equilibrium solution of an analytic autonomous Hamiltonian system in a neighborhood of the equilibrium point in the case where all eigenvalues are pure imaginary and the matrix of the linearized system is non-diagonalizable is considered.We give information about the stability of the equilibrium solution of Hamiltonian systems with two degrees of freedom in the critical case. We make a partial generalization of the results to Hamiltonian systems with n degrees of freedom, in particular, this generalization includes those in [1].

Ключевые слова: Hamiltonian system, stability, normal form, resonances.

MSC: 37C75, 34D20, 34A25

Поступила в редакцию: 19.07.2007
Принята в печать: 14.04.2008

Язык публикации: английский

DOI: 10.1134/S1560354708030039



Реферативные базы данных:


© МИАН, 2024