RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2008, том 13, выпуск 5, страницы 377–402 (Mi rcd585)

Эта публикация цитируется в 4 статьях

Nonholonomic mechanics

Normal Form of a Quantum Hamiltonian with One and a Half Degrees of Freedom Near a Hyperbolic Fixed Point

A. Yu. Anikin

M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia

Аннотация: According to classical result of Moser [1] a real-analytic Hamiltonian with one and a half degrees of freedom near a hyperbolic fixed point can be reduced to the normal form by a real-analytic symplectic change of variables. In this paper the result is extended to the case of the non-commutative algebra of quantum observables.We use an algebraic approach in quantum mechanics presented in [2] and develop it to the non-autonomous case. We introduce the notion of quantum non-autonomous canonical transformations and prove that they form a group and preserve the structure of the Heisenberg equation. We give the concept of a non-commutative normal form and prove that a time-periodic quantum observable with one degree of freedom near a hyperbolic fixed point can be reduced to a normal form by a canonical transformation. Unlike traditional results, where only formal theory of normal forms is constructed, we prove a convergence of the normalizing procedure.

Ключевые слова: algebra of quantum observables, quantum normal forms, non-autonomous quantum dynamics.

MSC: 37J40, 81R10

Поступила в редакцию: 21.05.2008
Принята в печать: 05.08.2008

Язык публикации: английский

DOI: 10.1134/S1560354708050018



Реферативные базы данных:


© МИАН, 2024