RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2007, том 12, выпуск 6, страницы 664–674 (Mi rcd646)

Эта публикация цитируется в 8 статьях

On the 65th birthday of R.Cushman

Hamiltonian Fourfold 1:1 Resonance with Two Rotational Symmetries

J. Egeaa, S. Ferrera, J.C. van der Meerb

a Departamento de Matematica Aplicada, Facultad de Informatica, Universidad de Murcia, 30100, Murcia, Spain
b Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Аннотация: In this communication we deal with the analysis of Hamiltonian Hopf bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1-1-1-1 resonance), in the presence of two quadratic symmetries $I_1$ and $I_2$. As a perturbation we consider a polynomial function with a parameter. After normalization, the truncated normal form gives rise to an integrable system which is analyzed using reduction to a one degree of freedom system. The Hamiltonian Hopf bifurcations are found using the 'geometric method' set up by one of the authors.

Ключевые слова: Hamiltonian system, bifurcation, normal form, reduction, Hamiltonian Hopf bifurcation, fourfold 1:1 resonance.

MSC: 37J20, 37J15, 37J40, 70H05

Поступила в редакцию: 07.05.2007
Принята в печать: 05.10.2007

Язык публикации: английский

DOI: 10.1134/S1560354707060081



Реферативные базы данных:


© МИАН, 2024