RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 2, страницы 155–165 (Mi rcd665)

Эта публикация цитируется в 18 статьях

On the 70th birthday of L.P. Shilnikov

A predator-prey model with non-monotonic response function

H. W. Broera, R. Roussarieb, V. Naudota, K. Saleha

a Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
b Institut Mathématiques de Bourgogne, CNRS, 9, avenue Alain Savary, B.P. 47 870, 21078 Dijon cedex, France

Аннотация: We study the dynamics of a family of planar vector fields that models certain populations of predators and their prey. This model is adapted from the standard Volterra–Lotka system by taking into account group defense, competition between prey and competition between predators. Also we initiate computer-assisted research on time-periodic perturbations, which model seasonal dependence. We are interested in persistent features. For the planar autonomous model this amounts to structurally stable phase portraits. We focus on the attractors, where it turns out that multi-stability occurs. Further, we study the bifurcations between the various domains of structural stability. It is possible to fix the values of two of the parameters and study the bifurcations in terms of the remaining three. We find several codimension 3 bifurcations that form organizing centers for the global bifurcation set. Studying the time-periodic system, our main interest is the chaotic dynamics. We plot several numerical examples of strange attractors.

Ключевые слова: predator-prey dynamics, organizing center, bi-furcation, strange attractor.

MSC: 58K45, 34C23, 34C60, 37D45

Поступила в редакцию: 01.08.2005
Принята в печать: 01.09.2005

Язык публикации: английский

DOI: 10.1070/RD2006v011n02ABEH000342



Реферативные базы данных:


© МИАН, 2024