RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 2, страницы 191–212 (Mi rcd668)

Эта публикация цитируется в 53 статьях

On the 70th birthday of L.P. Shilnikov

Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation

S. V. Gonchenkoa, J. D. Meissb, I. I. Ovsyannikovc

a Institute for Applied Mathematics and Cybernetics, 10, Uljanova Str. 603005 Nizhny Novgorod, Russia
b Applied Mathematics, University of Colorado, Boulder, CO 80309
c Radio and Physical Department, Nizhny Novgorod State University, 23 Gagarin str., 603000 Nizhny Novgorod, Russia

Аннотация: We study bifurcations of a three-dimensional diffeomorphism, $g_0$, that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers $(\lambda e^{i \varphi}, \lambda e^{-i \varphi}, \gamma)$, where $0< \lambda < 1 <|\gamma|$ and $|\lambda^2 \gamma|=1$. We show that in a three-parameter family, $g_{\varepsilon}$, of diffeomorphisms close to $g_0$, there exist infinitely many open regions near $\varepsilon = 0$ where the corresponding normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional Hénon-like map. This map possesses, in some parameter regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that this homoclinic bifurcation leads to a strange attractor. We also discuss the place that these three-dimensional Hénon maps occupy in the class of three-dimensional quadratic maps with constant Jacobian.

Ключевые слова: saddle-focus fixed point, three-dimensional quadratic map, homoclinic bifurcation, strange attractor.

MSC: 37C05, 37G25, 37G35

Поступила в редакцию: 03.10.2005
Принята в печать: 12.11.2005

Язык публикации: английский

DOI: 10.1070/RD2006v011n02ABEH000345



Реферативные базы данных:


© МИАН, 2024