RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2006, том 11, выпуск 2, страницы 213–224 (Mi rcd669)

On the 70th birthday of L.P. Shilnikov

Quasiperiodic regimes in multisection semiconductor lasers

S. V. Gonchenkoa, K. R. Schneiderb, D. V. Turaevc

a Institute for Applied Mathematics and Cybernetics, 10, Uljanova Str. 603005 Nizhny Novgorod, Russia
b Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
c Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Аннотация: We consider a mode approximation model for the longitudinal dynamics of a multisection semiconductor laser which represents a slow-fast system of ordinary differential equations for the electromagnetic field and the carrier densities. Under the condition that the number of active sections $q$ coincides with the number of critical eigenvalues we introduce a normal form which admits to establish the existence of invariant tori. The case $q = 2$ is investigated in more detail where we also derive conditions for the stability of the quasiperiodic regime.

Ключевые слова: multisection semiconductor laser, averaging, mode approximation, invariant torus, normal form, stability.

MSC: 78A60, 34C29, 34C20, 34C60

Поступила в редакцию: 29.07.2005
Принята в печать: 14.09.2005

Язык публикации: английский

DOI: 10.1070/RD2006v011n02ABEH000346



Реферативные базы данных:


© МИАН, 2024