RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 4, страницы 333–362 (Mi rcd714)

Эта публикация цитируется в 23 статьях

Bicentennial of C.G. Jacobi

Mathematical analysis of the tippe top

S. Rauch-Wojciechowski, M. Sköeldstam, T. Glad

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

Аннотация: A rigorous, and possibly complete analysis of the phase space picture of the tippe top solutions for all initial conditions when the top does not jump and all relations between parameters $\alpha$ and $\gamma$, is for the first time presented here. It is based on the use the Jellett's integral of motion $\lambda$ and the analysis of the energy function. Theorems about stability and attractivity of the asymptotic manifold are proved in detail. Lyapunov stability of (periodic) asymptotic solutions with respect to arbitrary perturbations is shown.

Ключевые слова: tippe top, rigid body, stability, Jellett's integral.

MSC: 70E18, 70E40, 70F25, 70K05

Поступила в редакцию: 27.01.2005
Принята в печать: 16.06.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n04ABEH000319



Реферативные базы данных:


© МИАН, 2025