RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 3, страницы 281–312 (Mi rcd881)

Эта публикация цитируется в 13 статьях

Thermodynamic Formalism and Selberg's Zeta Function for Modular Groups

C.-H. Chang, D. Mayer

Theoretische Physik, Technische Universität Clausthal, Arnold-Sommerfeld-Str. 6 38678 Clausthal-Zellerfeld, Germany

Аннотация: In the framework of the thermodynamic formalism for dynamical systems [26] Selberg's zeta function [29] for the modular group $PSL(2,\mathbb{Z})$ can be expressed through the Fredholm determinant of the generalized Ruelle transfer operator for the dynamical system defined by the geodesic flow on the modular surface corresponding to the group $PSL(2,\mathbb{Z})$ [19]. In the present paper we generalize this result to modular subgroups $\Gamma$ with finite index of $PSL(2,\mathbb{Z})$. The corresponding surfaces of constant negative curvature with finite hyperbolic volume are in general ramified covering surfaces of the modular surface for $PSL(2,\mathbb{Z})$. Selberg's zeta function for these modular subgroups can be expressed via the generalized transfer operators for $PSL(2,\mathbb{Z})$ belonging to the representation of $PSL(2,\mathbb{Z})$ induced by the trivial representation of the subgroup $\Gamma$. The decomposition of this induced representation into its irreducible components leads to a decomposition of the transfer operator for these modular groups in analogy to a well known factorization formula of Venkov and Zograf for Selberg's zeta function for modular subgroups [34].

MSC: 58F20, 58F25, 11M36, 58F03, 11F72, 70K05

Поступила в редакцию: 09.11.1999

Язык публикации: английский

DOI: 10.1070/RD2000v005n03ABEH000150



Реферативные базы данных:


© МИАН, 2024