RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 3, страницы 345–360 (Mi rcd884)

Non-linear Oscillations of a Hamiltonian System with One and Half Degrees of Freedom

B. S. Bardina, A. J. Maciejewskib

a Department of Theoretical Mechanics, Faculty of Applied Mathematics, Moscow Aviation Institute, Moscow, Russia
b Toruń Centre for Astronomy, N.Copernicus University, 87-100 Toruń, Gagarina 11, Poland

Аннотация: We study non-linear oscillations of a nearly integrable Hamiltonian system with one and half degrees of freedom in a neighborhood of an equilibrium. We analyse the resonance case of order one. We perform careful analysis of a small finite neighborhood of the equilibrium. We show that in the case considered the equilibrium is not stable, however, this instability is soft, i.e. trajectories of the system starting near the equilibrium remain close to it for an infinite period of time. We discuss also the effect of separatrices splitting occurring in the system. We apply our theory to study the motion of a particle in a field of waves packet.

MSC: 58F36

Поступила в редакцию: 09.06.2000

Язык публикации: английский

DOI: 10.1070/RD2000v005n03ABEH000153



Реферативные базы данных:


© МИАН, 2024