RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1998, том 3, выпуск 3, страницы 122–131 (Mi rcd953)

Эта публикация цитируется в 11 статьях

On the 70th birthday of J.Moser

Quadratic volume preserving maps: an extension of a result of Moser

K. E. Lenza, H. E. Lomelib, J. D. Meissc

a Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812
b Depeurtment of Mathematics, Instituto Tecnológico Autónomo de México, México, DF 01000
c Department of Applied Mathematics, University of Colorado, Boulder, CO 80309

Аннотация: A natural generalization of the Henon map of the plane is a quadratic diffeomorphism that has a quadratic inverse. We study the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic maps studied by Moser. In this paper we obtain a characterization of these maps for dimension four and less. In addition, we use Moser's result to construct a subfamily of in n dimensions.

MSC: 34C23, 34C35, 58F08

Поступила в редакцию: 11.07.1998

Язык публикации: английский

DOI: 10.1070/RD1998v003n03ABEH000085



Реферативные базы данных:


© МИАН, 2024