RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1998, том 3, выпуск 4, страницы 63–73 (Mi rcd962)

Эта публикация цитируется в 1 статье

Finitely and Infinitely Sheeted Solutions in Some Classes of Nonlinear ODEs

V. Marinakisa, A. Bountisa, S. Abendab

a Department of Mathematics and Center for Research and Application of Nonlinear Systems, University of Patras, 26500 Patras, Hellas
b Dipartimento di Matematica e CIRAM, Universita' di Bologna, Pizza San Donato 5, 140127 Bologna BO, Italy

Аннотация: In this paper we examine an integrable and a non-integrable class of the first order nonlinear ordinary differential equations of the type $\dot{x}= x - x^n + \varepsilon g(t), x \in \mathbb{C}, n \in \mathbb{N}$. We exploit, using the analysis proposed in [1], the asymptotic formulas which give the location of the singularities in the complex plane and show that there is an essential difference regarding the formation and the density of the singularities between the cases $g(t)=1$ and $g(t)=t$. Our analytical results are combined with a numerical study of the solutions in the complex time plane.

MSC: 32S70, 34A20

Поступила в редакцию: 28.07.1998

Язык публикации: английский

DOI: 10.1070/RD1998v003n04ABEH000093



Реферативные базы данных:


© МИАН, 2024