RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 4-5, страницы 466–478 (Mi rcd976)

Эта публикация цитируется в 1 статье

Proceedings of GDIS 2008, Belgrade

Elliptic curves and a new construction of integrable systems

V. Dragovićab, B. Gajića

a Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
b University of Lisbon

Аннотация: A class of elliptic curves with associated Lax matrices is considered. A family of dynamical systems on $e(3)$ parametrized by polynomial a with the above Lax matrices are constructed. Five cases from the family are selected by the condition of preserving the standard measure. Three of them are Hamiltonian. It is proved that two other cases are not Hamiltonian in the standard Poisson structure on $e(3)$. Integrability of all five cases is proven. Integration procedures are performed in all five cases. Separation of variables in Sklyanin sense is also given. A connection with Hess-Appel'rot system is established. A sort of separation of variables is suggested for the Hess-Appel'rot system.

Ключевые слова: elliptic curves, $L-A$ pair, integrability, Hess-Appel'rot system, separation of variables.

Поступила в редакцию: 29.01.2009
Принята в печать: 17.06.2009

Язык публикации: английский

DOI: 10.1134/S1560354709040042



Реферативные базы данных:


© МИАН, 2025