RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2025, том 80, выпуск 4(484), страницы 47–120 (Mi rm10259)

Multi-component Toda lattice hierarchy

T. Takebea, A. V. Zabrodinbcd

a Beijing Institute of Mathematical Sciences and Applications, Beijing, People's Republic of China
b Skolkovo Institute of Science and Technology, Moscow, Russia
c National Research University "Higher School of Economics", Moscow, Russia
d National Research Centre "Kurchatov Institute", Moscow, Russia

Аннотация: We give a detailed account of the $N$-component Toda lattice hierarchy, which can be regarded as a generalization of the well-known Toda chain model and its non-abelian version. This hierarchy is an extension of the one introduced earlier by Ueno and Takasaki. Our version contains $N$ discrete variables rather than one. We start from the Lax formalism, deduce the bilinear relation for wave functions from it, and then, based on the latter, prove the existence of the tau-function. We also show how the multi-component Toda lattice hierarchy is embedded into the universal hierarchy, which is basically the multi-component Kadomtsev–Petviashvili hierarchy. Finally, we show how the bilinear integral equation for the tau-function can be obtained using the free fermion technique. An example of exact solutions (a multi-component analogue of one-soliton solutions) is given.

Ключевые слова: Toda lattice hierarchy, multi-component version, Lax formalism, Zakharov-Shabat equation, wave functions, tau-function, bilinear identity, fermion technique, universal hierarchy.

УДК: 517.958+517.962.24+517.937

Поступила в редакцию: 16.02.2025
Принято редколлегией: 26.05.2025

Язык публикации: английский

DOI: 10.4213/rm10259



© МИАН, 2025