Аннотация:
Рассматриваются гамильтоновы системы дифференциальных уравнений, мало отличающиеся от вполне интегрируемых. Если такая система интегрируемая, то переменные действие не могут сильно изменяться и поэтому никакой диффузии нет. Таким образом, неинтегрируемое поведение гамильтоновой системы и наличие диффузии медленных переменных тесно связаны друг с другом. Этот круг вопросов обсуждается для одного класса гамильтоновых систем, на примере которых рассматривается новый механизм диффузии, отличный от “стандартного” механизма переходных цепочек. Он связан с разрушением большого числа инвариантных торов невозмущённой задачи с почти резонансным набором частот. Формальная сторона этого явления опирается на условия неограниченности интегралов условно периодических функций времени с нулевым средним значением.
Библиография: 43 названия.
Ключевые слова:
гамильтонова система, основная проблема динамики, многозначные интегралы, ряды Линдштедта, диффузия, неинтегрируемость, условно периодические функции.
УДК:517.938+531.01
Поступила в редакцию: 07.07.2025 Принято редколлегией: 14.07.2025