Аннотация:
Пусть $A$ – замкнутый эрмитов оператор в пространстве $\mathfrak H$. В линеал $\mathfrak H_+=\mathfrak D(A^*)$ вводится новое скалярное произведение $(x, y)_+=(x,y)+(A^*x,A^*y)$. Пусть $\mathfrak H_+\subset\mathfrak H\subset\mathfrak H_-$ – соответствующее оснащение. Оператор $A\colon\mathfrak H_+\to\mathfrak H_-$ называется бирасширением оператора $A$, если $\mathbf A\supset A$, $\mathbf A^*\supset A$.
Статья посвящена теории бирасширений, в частности, самосопряженных.
Исследованы резольвенты бирасширений. Доказано, что эти резольвенты могут быть расширены на пространство $\mathfrak H_-$. Строится теория неограниченных операторных
узлов и их характеристических функций; решается обратная задача. Особо рассматриваются следующие спецификации: а) случай полуограниченного $A$; б) наличие в $\mathfrak H$ инволюции.
Библ. 83 назв.