Эта публикация цитируется в
1 статье
Математическая логика, алгебра и теория чисел
О ранге коммутанта конечной $p$-группы, порожденной элементами порядка $p$ при $p > 2$
Б. М. Веретенников Ural Federal University,
19 Mira street,
620002 Ekaterinburg, Russia
Аннотация:
All groups in the abstract are finite. We define rank
$d(G)$ of a
$p$-group
$G$ as the minimal number of generators of
$G$,
$d(G) = 0$ if
$|G|=1$. Let
$p$ be an odd prime number,
$n,k$ be integers,
$n \geq 1$,
$k \geq 1$. By
$M(n,k,p)$ we denote the number of sequences
$i_1,\dots,i_k$ in which
$1 \leq i_1 \leq \dots \leq i_k \leq n$, all members
$i_j$ are integers and in which any integer from
$[1,n]$ may be present at most
$(p-1)$ times. In addition we define
$M(n,k,p)=0$ if
$n \leq 0$ or
$k < 0$ and
$M(n,0,p)=1$ if
$n \geq 1$. By
$C(n,k,p)$ we denote $\sum\limits_{1 \leq i_2 \leq n-1} ( M(n-i_2+1,k-2,p) -2 M(n-i_2, k-p-1, p) +M(n-i_2-1, k-2p-1,p) ) (n-i_2)$. By
$D(n,p)$ we denote the following sum:
$\sum\limits_{k=2}^{n(p-1)} C(n,k,p)$;
$D(1,p)=0$. We prove that for any
$p$-group
$G$ generated by
$n$ elements of order
$p > 2$,
$d(G') \leq D(n,p)$ and that the upper bound is attainable. As an intermediate result we prove that the class of nilpotency of such group
$G$ with elementary abelian commutator subgroup does not exceed
$n(p-1)$ and this upper bound is also attainable.
Ключевые слова:
finite
$p$-group generated by elements of order
$p$, minimal number of generators of commutator subgroup, definition of group by means of generators and defining relations.
УДК:
512.54
MSC: 20B05 Поступила 4 сентября 2018 г., опубликована
31 октября 2018 г.
DOI:
10.17377/semi.2018.15.109