Математическая логика, алгебра и теория чисел
Усиленная версия гипотезы Симса для примитивных параболических подстановочных представлений конечных простых групп лиевых типов $G_2$, $F_4$ и $E_6$
В. В. Кораблеваab a N.N. Krasovskii Institute of Mathematics and Mechanics,
16, S. Kovalevskaya st.,
Yekaterinburg, 620990, Russia
b Chelyabinsk State University,
Bratiev Kashirinykh St., 129,
Chelyabinsk, 454001, Russia
Аннотация:
For a finite group
$G$, subgroups
$M_1$ and
$M_2$ of
$G$ and any
$i\in\mathbb{N}$, the subgroups
$(M_1, M_2)^i$ and
$(M_2, M_1)^i$ of
$M_1\cap M_2$ are defined, inductively on
$i$, as follows:
$$(M_1, M_2)^1 = (M_1\cap M_2)_{M_1},~(M_2, M_1)^1 = (M_1\cap M_2)_{M_2},$$
$$(M_1, M_2)^{i+1} = ((M_2, M_1)^i)_{M_1},~(M_2,M_1)^{i+1} = (M_1,M_2)^i_{M_2}.$$
Here, for
$H\leq G$,
$H_G$ denotes
$\bigcap_{g\in G}gHg^{-1}$. Denote by
$\Pi$ the set of all triples
$(G,M_1,M_2)$ such that
$G$ is a finite group,
$M_1$ and
$M_2$ are distinct conjugate maximal subgroups of
$G$,
$(M_1)_G=(M_2)_G=1$, and
$1 < |(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The triples
$(G,M_1,M_2)$ and
$(G',M'_1,M'_2)$ from
$\Pi$ are equivalent if there exists an isomorphism from
$G$ to
$G'$ mapping
$M_1$ to
$M'_1$ and
$M_2$ to
$M'_2$. The present paper is a continuation of the investigations by A.S. Kondrat'ev and V.I. Trofimov on a description of the set
$\Pi$. It is obtained the description up to equivalence all triples
$(G,M_1,M_2)$ from
$\Pi$ in the case when
$G$ is a finite simple group of Lie type
$G_2$,
$F_4$ or
$E_6$, and
$M_1$ is a parabolic maximal subgroup of
$G$.
Ключевые слова:
finite simple group of Lie type, primitive parabolic permutation representation, maximal subgroup, mutual cores, strong version of Sims conjecture.
УДК:
512.542
MSC: 20D06,
20B15,
20D30,
20E28 Поступила 1 октября 2018 г., опубликована
7 декабря 2018 г.
DOI:
10.33048/semi.2018.15.132