RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2019, том 16, страницы 236–248 (Mi semr1056)

Дифференциальные уравнения, динамические системы и оптимальное управление

Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint

T. V. Sazhenkovaa, S. A. Sazhenkovbc

a Department of Mathematics & Information Technologies, Altai State University, 61, Lenina ave., Barnaul, 656049, Russia
b Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, 15, Acad. Lavrentyeva ave., Novosibirsk, 630090, Russia
c Mechanical & Mathematical Department, Novosibirsk National Research State University, 2, Pirogova str., Novosibirsk, 630090, Russia

Аннотация: We consider the homogeneous Dirichlet problem for the nonlinear diffusion-absorption equation with a one-sided constraint imposed on diffusion flux values. The family of approximate solutions constructed by means of Alexander Kaplan's integral penalty operator is studied. It is shown that this family converges weakly in the first-order Sobolev space to the solution of the original problem, as the small regularization parameter tends to zero. Thereafter, a property of uniform approximation of solutions is established in Hölder's spaces via systematic study of structure of the penalty operator.

Ключевые слова: penalty method, p-Laplace operator, diffusion-absorption equation, one-sided constraint.

УДК: 517.972.5 + 51-72

MSC: 35J92

Поступила 17 января 2019 г., опубликована 21 февраля 2019 г.

Язык публикации: английский

DOI: 10.33048/semi.2019.16.015



Реферативные базы данных:


© МИАН, 2024